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ABSTRACT

This report is on the third phase of the development of the computer codes for

scattering by coated bodies that has been part of an ongoing effort in the

Electromagnetics Laboratory of the Electrical Engineering and Computer Science

Department at the University of Illinois at Chicago. The work reported here discusses the

analytical and numerical results for the scattering of an obliquely incident plane wave by

impedance bodies of revolution with phi variation of the surface impedance.

Integral equation formulation of the problem is considered. All three types of

integral equations, electric field, magnetic field and combined field, are considered.

These equations are solved numerically via the method of moments with parametric

elements. Both TE and TM polarization of the incident plane wave are considered. The

surface impedance is allowed to vary along both the profile of the scatterer and in the phi

direction.

Computer code developed for this purpose determines the electric surface

current as well as the bistatic radar cross section. The results obtained with this code have

been validated by comparing the results with available results for specific scatterers such

as the perfectly conducting sphere. Results for the cone-sphere and cone-cylinder-sphere

for the case of an axially incident plane have been validated by comparing the results

with the results with those obtained in the first phase of this project. In this report results

for body of revolution scatterers with an abrupt change in the surface impedance along

the both the profile of the scatterer and the phi direction are presented.

vi



1. INTRODUCTION

The availability of new artificial dielectric and absorbing materials during the

last decade has resulted in increased activity and interest in the formulation and analysis

of reflection, transmission and scattering by such materials and bodies coated with these

anisotropic materials [Graglia et. al., 1984, 1987a, 1987b] The very nature of these

problems require that, except for very special cases of material parameters and

geometries, a numerical solution be performed. Finite difference, finite element and

integral equation formulations are the techniques employed most frequently in such cases.

In this study the scattering problem is formulated in terms of an integral equation. This

technique well suited to problems involving anisotropic and inhomogeneous materials.

The integral equation formulation leads to a set of coupled integro-differential equations

which can be solved numerically using the method of moments [Harrington, 1968]. From

a computation stand point a method of moments solution of an integral equation is

particularly effective when parametric elements are employed [Graglia, 1988a, 1989].

This repon describes the details of the development of a set of computer codes

for scattering by a body of revolution with arbitrary surface impedance. This is the third

phase of an ongoing effort at the University of Illinois at Chicago to develop codes that

would allow the numerical computation of electromagnetic scattering by and the radar

cross section (RCS) of an arbitrary body coated with a variety of artificial materials. The

present phase of the study presented in this report is the development of analytical results,

numerical codes and results for the scattering of an obliquely incident plane wave by a

body of revolution with an impedance boundary condition. This phase differs from the

previous phase in that the surface impedance is allowed to vary not only along the profile

of the scatterer but also in the phi direction.
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Theanalyticalresultspresentedin Chapter2 areapplicableto a scattererwhich

hasabody of revolutionsymmetry.Theprofile of thescattereris readily describedby a

generatingcurvedescribedparametricallyin cylindricalcoordinatesby apair of functions

p(s) and z(s) where s is the arclength along the profile (generating curve) of the scatterer.

The surface of the scatterer is generated by rotating the generating curve in the ¢ direction

around the z axis. The surface impedance is allowed to vary as a function of both the

arclength s and the cylindrical coordinate ¢.

The integral equation formulation leads to vector integro-differential equations

for the unknown electric surface current density on the scatterer. All three types of

integral equations, electric field integral equation (EFIE), magnetic field integral equation

(MFIE) and combined field integral equation (CFIE) are derived. These integral

equations are then specialized for the case where the scatterer has body of revolution

symmetry. This specialization transforms the vector integral equations into a pair of

coupled scalar integral equations in terms of the vector components of the electric surface

current density. Expressions for the incident fields with arbitrary angle of polarization and

arbitrary angles of incidence are derived in parallel with the corresponding integral

equation. Finally, expressions for the far scattered fields and the bistatic radar cross

sections in terms of the electric surface current density are derived for the geometry under

consideration.

In Chapter 3, after a brief discussion of the method of moments to introduce the

terminology and notations, specific details of geometry and surface impedance

descriptions are presented. This is followed by a overview of the Hermite expansion

functions utilized in the method of moments implementation. The discussion covers

Hermite expansion functions in one-dimension and its extension to two-dimensions. This

is followed by details of the representation of the surface currents and some practical
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considerations involving the testing procedure used in this method of moments

implementation. The discussionspresentedin this chapter delineate explicitly the

expressionsneededfor numericalimplementationof theschemeandshedsomelight on

thedevelopmentof thecomputercode.

The numerical results obtained from the code developed based on the

discussionsfound in Chapters2 and3 arepresentedin Chapter4. Resultsvalidating the

codehavebeenpreviouslypresentedin thereportfor PhaseII of this study[Uslenghi et.

al., 1991b]. The results presentedhere will concentrateon caseswhere the surface

impedanceis allowed to have abruptdiscontinuitiesin either the s direction only or in

both the s and _ directions (i.e. impedance patch). The data presented was generated on a

Cray Y-MP with 64 megawords (512 megabytes) of memory. Future plans include the

parallelization of the code for shared memory parallel processor systems like the Cray Y-

MP and also for massively parallel processor systems like the Thinking Machines CM5.



2. ANALYTICAL RESULTS

2.1 Introduction

This chapter deals with the derivation of the analytical results for the problem of

scattering of an electromagnetic plane wave by a scatterer with body of revolution

symmetry. The material properties of the scatterer are specified through the use of a

surface impedance boundary condition. General integral equations for a scatterer with

arbitrary geometry and arbitrary surface impedance are derived. Three integral equations,

electric field integral equation, magnetic field integral equation and combined field

integral equation, are presented. These integral equations are then specialized to the

geometry of interest. Finally, expressions for the far field and bistatic radar cross section

are presented.

2.2 Statement of Problem

Given a scatterer geometry, the material properties of the scatterer and the form

of the incident electromagnetic fields the problem is to determine the fields which arise

when the incident fields interact with the scatterer. The geometry of the problem under

consideration is shown in Figure 2.2.1. The scatterer consists of a body of revolution with

a surface impedance boundary condition. The surface impedance is allowed to vary

arbitrarily over the surface of the scatterer. The incident electromagnetic wave is taken to

be a linearly polarized plane wave with arbitrary angle of polarization and arbitrary

angles of incidence. Throughout this work, a time harmonic variation of the form e i_ is

implicitly assumed.

The geometry of the scatterer is defined by specifying a generating curve which

is parameterized in terms of the arclength along the generating curve as shown in

Figure 2.2.2. To allow for rather complex scatterer geometries the generating curve is

defined by specifying two profile functions p(s) and z(s) where s is the arclength

coordinate of the point (p,z) on the generating curve and p and z are the usual cylindrical
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coordinates.The surfaceof thescattereris thendefinedby rotating the generatingcurve

aboutthe z axis through an angle of 360 °. Since p and z are functions of s, each point on

the surface of the scatterer is uniquely defined by its s and ¢_coordinates. The surface of

the scatterer can then be easily mapped to a rectangular region in the s-_ plane.

Figure 2.2.1 Geometry of Problem

(p,z)

$

z = 0 Z(S) z = h
v

Z

Figure 2.2.2 Geometry of generating curve.
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The directionof propagationof the incident fields is specifiedby two anglesof

incidence,0 i and _i where 0i is the angle between the propagation vector, k;, and the

positive z axis and _i is the angle between the projection of the propagation vector on to

the x-y plane and the positive x axis. Using 0_ and _i, define the following set of

orthogonal unit vectors

i_ = _ cos(0 i) cos(A i) + 0 cos(0_) sin(A_) - i sin(0_) (2.2.1)

Y i = -15 sin(a,) + 0 cos(A i) (2.2.2)

i, = fi sin(0_ )cos(A,) + 0 sin(0_ )sin(A_) + icos(0 i) (2.2.3)

where A i = 0z -0. These unit vectors define a coordinate system in which the incident

fields propagate along i_ and have components which lie only in the x_-y i plane. The

incident electric field, Ei,and the incident magnetic field, H _, can be written in terms of

the coordinate system defined by eqs. (2.2.1), (2.2.2) and (2.2.3) as

E i (r) = [xi cos(v) + Yi sin(v)] e-J1''''

Hi(r) = _o [-i, sin(v) + _, cos(v)]e -'_''

(2.2.4)

(2.2.5)

where k i =k01_ _=k01 _, r=lSp+iz, Z 0 is the impedance of free space, k 0 is the free

space wave number and v is the polarization angle. The incident plane wave is said to

have transverse magnetic polarization (TM polarization) when the incident electric field

has a component only in the _ direction (v = +7r/2) and transverse electric polarization

(TE polarization) when the incident magnetic field has a component only in the _,

direction (v = 0, 7r)

In general,/7 the relative surface impedance can be an arbitrary function of s and

0. However, some care must be taken so that the definition of 17 does not lead to an

ambiguous value for the surface impedance at the points s = 0 and s = s,,_,. For example,

r/(s,0) = cos(0) leads to an ambiguous surface impedance at s = 0 and s = s,_,, that is, 77



hasan infinite number of values at thesetwo points. However, if r/(s,0)= u(q_-zt),

0 < ¢ _<27r where u(t) is the unit step function, then r/ has two values at s = 0 and

s = s,,_ but this is an acceptable form since it corresponds to a scatterer with a surface

which is perfectly conducting in the half space y > 0 and has a relative surface impedance

equal to 1 in the half space y < 0.

2.3 Derivation of Integral Equations

In the phasor domain, Maxwell's equations can be written as follows:

V ×H = J, +jtoD

7 x E = -J_ - joJB

V.D=p,

V.B=p,

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

where E, H, D, B are the electric field, magnetic field, electric flux density and the

magnetic flux density respectively, J,, J,,, p,, and p,, are the electric current density,

magnetic current density, electric charge density and magnetic charge density

respectively and a time dependence of e i_ has been assumed.

A solution of Maxwell's equations in free space for the electric field, E, and the

magnetic field, H, in terms of the electric sources, p, and J, and the magnetic sources,

p,, and J, can be written as follows [Elliott, 1981]

where

E(r) = -re, (r) - jaaA, (r) - 1 V x A.. (r)
£o

H(r) = -V_,, (r) - jt.oA_, (r) +---1 V x A, (r)
/a0

¢,(r) = __1 f G(r,r')p,(r')dV'
4/'t-E 0 _,

_(r) = 1 , , ,-fC(r,,")p,,(,"),iv
v

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)
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/l°! G(r,r')J,(r')dV'A,(r) = _-_

A_(r)= _ G(r,r')J,_(r')dV'

(2.3.9)

(2.3.10)

e 0 is the permittivity of free space,/.t o is the permeability of free space, k0 = to_ is

the free space wave number and G(r,r') is the free space Green's function which is given

by

e-JkoR
G(r,r')=G(R)=_; R =lr-r' [ (2.3.11)

R

The terms _e, _,,, Ae, and A,. are referred to as the electric scalar potential, magnetic

scalar potential, electric vector potential and the magnetic vector potential respectively.

Additionally, the charge densities Pe and Pm are related to the current densities J, and

J,_ by the following continuity equations

V. J, (r) + jcop_ (r) = 0

V. J_ (r) + jcop_ (r) = 0

(2.3.12)

(2.3.13)

The scattering problem under consideration is formulated by invoking the

equivalence theorem [Harrington, 1961], [Elliott, 1981]. The scatterer is removed and is

replaced by an equivalent electric surface current density J,,, an equivalent electric

surface charge density p,,, an equivalent magnetic surface current density J,,_, and an

equivalent magnetic surface charge density p,_. The surface currents J,_ and J,,_ and the

surface charge densities pc, and p,,_ exist on the surface S where S corresponds to the

surface of the scatterer. The original fields on S and the equivalent surface currents satisfy

the following boundary conditions

J =fixH (2.3.14)
£$

J =-fixE (2.3.15)
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wherefi is theoutwardpointing surface normal and H and E are the total magnetic field

and total electric field respectively over the surface S. For the problem under

consideration the scatterer is taken to be an impenetrable scatterer so the fields are equal

to zero inside the scatterer. The total electric field and total magnetic field are then given

by E = E i +E" and H=H i +H' where E" and H _ are the scattered electric and magnetic

fields respectively.

Since the sources are confined to the surface of the scatterer the potentials

associated with the equivalent surface current densities and surface charges densities can

be obtained from eqs. (2.3.7), (2.3.8), (2.3.9) and (2.3.10) by replacing the current

densities, J, and J,_, and the charge densities, p, and p=, by the equivalent surface

current densities, J, and J,,_, and the equivalent surface charge densities, p,, and p_

Also, the volume integral Iv dV" is replaced by the surface integral _s dS'.respectively.

Then, the scattered electric and magnetic fields due to the equivalent sources

can be written as

E'(r) = ---

H'(r) = ___

1 V_G(r,r')p._(r')dS' J°_ll° _G(r,r')J,,(r')dS'
4fie0 s 4ff s

_ 1 V x_G(r,r')J_(r')dS'
4zr J

$

"(DE° !1 V_G(r,r')p,,_(r')dY-j-_-_. G(r,r )J,,_(r')dS'
4riP0 s

+-_ffVx!G(r,r')J,(r')dS'

(2.3.16)

(2.3.17)

Interchanging the order of differentiation and integration in eqs. (2.3.16) and (2.3.17),

making use of the following relations

V I G(r,r')f(r')dS'=If(r')VG(r,r')dS'

V x IG(r,r')F(r')dS" = IVG(r,r') x F(r')dS'

(2.3.18)

(2.3.19)
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noting that VG =-V'G and using the continuity equationsgiven by eqs.(2.3.12) and

(2.3.13) to write the chargedensities in terms of the surface current densities, the

scatteredelectricandmagneticfields can be written as

jZo J,,(r')]dS'
4_0

+ V'G(r,r') J._(r )dS

I-l'(r) = J-z_-Y,°q_tV'G(r,r')l[V'. J._(r')]dS'-_
z_g0

1
_ V'G(r,r') x J,,(r')dS'

47r s

Jk°Z° _G(r,r')J,,(r')dS"
4fr s

jkoYo_ G(r,r')J._(r')dS'
4ft s

(2.3.20)

(2.3.21)

where Z o = _o/eo is the characteristic impedance of free space and Y0 = 1/Zo is the

characteristic admittance of free space.

If the current densities J,, and J,,_ were known eqs. (2.3.20) and (2.3.21) could

be used to calculate the scattered electric and magnetic fields. However for a scattering

problem J,, and J,,, are generally not known in advance and so a direct calculation of

the scattered fields is not possible. Since the incident electric and magnetic fields are

known it is conceivable that one might try to construct a pair of integral equations for the

unknown surface current densities by substituting eqs. (2.3.20) and (2.3.21) into the

electromagnetic boundary conditions given by eqs. (2.3.14) and (2.3.15). However, one

important piece of information for this problem has not been considered. The material

properties of the scatterer do not appear in the expression for the either the scattered

electric field or the scattered magnetic field. They also do not appear in either of the two

electromagnetic boundary conditions.

If one were considering the problem of scattering from a dielectric scatterer the

material properties of the scatterer would appear in the Green's function used to write the

potentials for the fields inside the scatterer. For an impedance scatterer the material
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propertiesarespecified through the useof the surfaceimpedanceboundarycondition.

Repeatedfor convenience,thesurfaceimpedanceboundaryconditionis givenby

E_ = E - (E. fi)fi = rlZofi × It (2.3.22)

where Z 0 in the impedance of free space, r/is the relative surface impedance and h is the

outward pointing surface normal. Taking the cross product of fi with eq. (2.3.22) and

making use of the following relation

6xE_ = h x[E-(E.fi)fi] = fixE (2.3.23)

one obtains the following expression

fi x E = rIZofi x fi x H (2.3.24)

Making use of the electric and magnetic boundary conditions given by eqs. (2.3.14) and

(2.3.15) the magnetic surface current density J_ can be written in terms of the electric

surface current density J,, as follows

J,,_ = -r/Zofi x J,, (2.3.25)

Substituting eq. (2.3.25)

expressions for the scattered fields

into eqs. (2.3.20) and (2.3.21) one obtains the following

E'(,)
Zl'_o

Z° §V'G(r,r')x [r/(r')h' x J.,(r')]dS'
4_" s

H' (r)= -J_--" _[V'G(r,r')][V'- (r/(r')fi' x J,, (r'))]dS'
4trk0

+ -_! G(r,r')[r/(r')fi' x J.,(r')ldS"

_! x ' '- V'G(r,r') J,,(r)dS

Jk°Z° _G(r,r')J,,(r')dS"
4_ s

(2.3.26)

(2.3.27)
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The electric field integral equation (EFIE) for the unknown surfacecurrent

density J,, can be derived in the usual manner [Poggio and Miller, 1973] from the

boundary condition for the total electric field given by eq. (2.3.15). Substituting

eq.(2.3.26)in eq.(2.3.15),making useof eq. (2.3.25)and taking the limit as the field

point r approaches r' on the surface S the following electric field integral equation is

obtained

r/(r)ZofiXJ,,(r)= 2fixE_(r)+ JZ° fix _[V'G(r,r')][V'.J,,(r')]dS"
27rk0 s

Jk°Z° fi §G(r,r )J,_(r )dSX f P #

2_
$

Z° fi _V'G(r,r')×[rl(r')fi' xJ,,(r')]dS'
2_

s

(2.3.28)

where _s
i'

represents the principle value of the surface integral _s o

In a similar manner, the magnetic field integral equation (MFIE) can be derived

from the boundary condition for the total magnetic field given by eq. (2.3.14) and the

expression for the scattered magnetic field given by eq. (2.3.27). The resulting magnetic

field integral equation is given below.

J.,(r) = 2fi x I-li(r) - J---_--fi x _[V'G(r,r')][V'. (r/(r')fi' x J.,(r'))]dS'
2_ko s

+ Jk°fi x }G(r,r')[r/(r')fi' x S.,(r')ldS'
2_

$

1 fix_-V'G(r,r')xJ,,(r')dS"
2_

s

(2.3.29)

Following Mitzner [1968] and Oshiro et. al. [1970], the combined field integral

equation (CFIE) can be derived from the superposition of the magnetic field boundary

condition given by eq. (2.3.14) and a modified form of the electric field boundary

condition given by eq. (2.3.15). This form of the integral equation is also discussed in
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detail by Jones[1979]. Using E,., =-fi x fi x E, an alternate form of the electric field

boundary condition can be written as follows

h x J_, = E_ (2.3.30)

Now construct a combined field boundary condition by the superposition of the usual

magnetic field, boundary condition, eq. (2.3.14) and the electric field boundary condition

given by eq. (2.3.30) as follows

"4" aCFIE (l_! O_CFIE Et_ (2.3.31)L, xJ )=axH+ Zo

where ach E is a scalar constant. The combined field integral equation can then be derived

by substituting the expressions for the scattered electric and magnetic fields given by

eqs. (2.3.26) and (2.3.27) into eq. (2.3.31). However, it is more convenient to write the

combined field integral equation by utilizing the results for the electric and magnetic field

integral equations.

Using the notation of Poggio and Miller [1968] the electric field integral

equation and the magnetic field integral equation can be written in operator notation as

LE[J,,(r')] = 2fi x E;(r) (2.3.32)

Lx[J,,(r')] = 2fi x W(r) (2.3.33)

where the electric field integral operator L E and the magnetic field integral operator L n

are given by

LE[J,,(r')] = r/(r)h x J,,(r)

JZ° 6x_V'G[V'.J,,(r')]dS"
2_k o

+ Jk°Z°2_rh x _s OJ,,(r')dS"

+Z°fix_sV'G [r/(r')fi' J,,(r)]dSX X ' '

27r

(2.3.34)
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and

LH[J,,(r')] = J_(r)

+ J--2--fi x ffsV'G[V'. r/(r')fi' x J,,(r')]dS'
2_o

Jk° h x _s r/(r')G[fi x J,,(r')]dS'
2zt

+l_x:_ v'a xJ,,(r')ds'
2tr

(2.3.35)

The combined field integral equation can then be written in terms of the electric and

magnetic field integral equations as

Lc[J,,(r')] = 2hx(H'(r)-C_C_rzo fixEi(r)) (2.3.36)

where the combined field integral operator Lc is given by

Lc[J,,(r')] = LH[J,,(r') ] - ac_ fix LE[J,,(r')]
Zo

(2.3.37)

The electric field, magnetic field and combined field integral equation given by

eqs. (2.3.32), (2.3.33) and (2.3.36) respectively are valid for scatterers with arbitrary

shape and arbitrary surface impedance. In the following sections these integral equation

will be specialized to the case where the shape of the scatterer is a body of revolution.

2.4 Integral Equations for Body of Revolution

2.4.1 Preliminary Remarks

The integral equations obtained in Section 2.3 are valid for an arbitrarily shaped

scatterer with arbitrary surface impedance. In Sections 2.4.2, 2.4.3 and 2.4.4 these

integral equations will be simplified for the case of a scatterer with body of revolution

symmetry.
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At each point P = (p,C_,z) on the surface of a body of revolution it is possible to

construct a local right handed coordinate system (_:,n,¢0 as shown in Figure 2.2.1. The

unit vectors for the local coordinate system at the point P can be written as

= 15sin(a) + _cos(a)

fi = _ cos(a) - isin(a)

= -i sin(C) + _, cos(C)

(2.4.1)

(2.4.2)

(2.4.3)

where o_ is the angle between _ and i and _ is the usual unit vector from the cylindrical

coordinate system which is given by

= i cos(C0 + _ sin(C0 (2.4.4)

Also, the unit vectors "_ and 0 are tangent to the surface at the point P while the unit

vector fi is normal to the surface at the point P. Note, since the generating curve for the

body of revolution is defined by specifying two profile function p(s) and z(s) the angle

is also a function of s.

2.4.2 Electric Field Integral Equation

In this section the electric field integral equation derived in Section 2.3 for the

case of an impedance body will be specialized for a scatterer with body of revolution

symmetry. In the process, the vector integral equation for the unknown vector electric

surface current density J,, will be reduced to a pair of coupled scalar integral equations

in terms of the vector components of Jr,-

The electric field integral is specialized by obtaining the components of the

integral equation which are tangent to the surface of the body of revolution. In order to

obtain the tangential components it is convenient to rewrite the electric field integral

equation given by eq.(2.3.28) as follows

2fi x El(r) = r/(r)Z0fi x J,_(r) - _(r) - _(r) - 9_(r) (2.4.5)
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where

and

_(r) = jZ° fi× _[V'G(r.r')][V'. J,_(r')]dS'
2_r_o s

_ (r) = -jk°Z° fix §G(r,r')J,,(r')dS'
2zt

$

- _Z0a× × ×S.,(r')]dS"
21r

S

J.(r') = _'J_(r') + _'J,(r')

= _[sin(a')cos(A')J_(r')-sin(A')J,(r')]

+ _[cos(A') J, (r') - sin(_') sin(A')J_ (r')] + _ cos(a')J_ (r')

(2.4.6)

(2.4.7)

(2.4.8)

(2.4.9)

where A'=0'-0. Interchanging the cross product operation with

operation and making use of the following expression

V'G = -VG = (r - r') 1 +R3Jk°Re -'°R = (r- r')G x

where

G] 1 + jkoR
= R 3 e -j_°R

the integration

(2.4.10)

(2.4.11)

the expressions for $_, $_ and _3_ can be written as

13_(r) = jZ° _G,(r,r')[fix(r-r')][V'.J,,(r')ldS'
2Zrko s

$_(r)= Jk°Z° }G(r,r')[fixJ,,(r')]d$'
27t s

_3_(r) = _Zo J_rt(r')G, (r,r')[fi x (r- r')x (h' x J,,(r'))]dS"
2it s

(2.4.12)

(2.4.13)

(2.4.14)

The z and 0 components are obtained by taking the dot product of eq (2.4.5) with { and

respectively.
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Theelectricfield integral equationgivenby eq.(2.3.28)cannow bewritten as

thefollowing pair of coupledscalarintegralequations.

E_(r) = Ir/(r)ZoJ_(r)

_s [ ' sin(or')+ 4xkoJZ° G_(r,r')p'sin(A') .OJ_7,r#s ) 4 P' J_(r')_

+ jkoZo , , , , ,
--_ !G(r,r )sin(cx )sin(A )J_(r )dS

+ J_([G(r,r')cos(A')J,(r')dS"
47[ _S

+ Z° _ r/(r')G 1(r, r'){[ X cos( A')- 2p sin 2(A,/2)]cos((z')
4_r s

-_ sin((z') cos(A')} J, (r')dS'

Zo f rl(r,)Gl(r,r,)_sin(A,)J_(r,)d S,
4_r s

1 t_J_(r') .-,

(2.4.15)

and

E',(r) = 2r/(r)ZoJ,(r)

+ JZ° --[G](r,r'){[Zcos(A')- 2psin2(A'/2)]sin(a)+ _cos(a)}
4nko

|_gJ_(r') " ' 1
F

s, _ sin(or ) jr(r,) +
Las' p' p'

Jk°Z° _ G(r,r')sin(a)sin(A')J, (r')dS'
47r s

jkoZo , , , , , ,

+ --_ !G(r,r )[sin(a)sin(a )cos(A ) + cos(a)cos(a )]J_(r )dS

Z° f r/(r')G] (r, r'){p'sin(tx) cos(a') - p cos(a)sin(a')
4tr s

-4 sin(a) sin(tx')} sin(A') J, (r')dS'

Z° _ r/(r')G_(r,r'){_sin(a)cos(A')

-[X + 2psin2(A'/2)]cos(a)}J_(r')dS ' (2.4.16)
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whereZ = P' - P, _ = z' - z and dS" = p'dtk'ds' for a body of revolution.

Finally, from eq. (2.2.4) the _"and _ components of the incident elecwic field can

be written as

E_ (r) = {[cos(0, )cos(A i) cos(v) - sin(A i )sin(v)] sin(a)

- sin(0i) cos(v)cos(c0}e- _''"

E$(r) = [cos(0,)sin(A_)cos(v) + cos(A,)sin(v)]e -_'"

(2.4.17)

(2.4.18)

where

k'.r= ko/__.r = ko[psin(O,)cos(A,) + zcos(O,)] (2.4.19)

2.4.3 Magnetic Field Integral Equation

The magnetic field integral equation derived in Section 2.3 for an arbitrarily

shaped impedance scatterer is now specialized for a scatterer with body of revolution

symmetry. The method is virtually identical to that used for the electric field integral in

the the previous section (Section 2.4.2).

The magnetic field integral equation given by eq. (2.3.29) can be written in a

more convenient form as follows

2fix i ....H(r)-J,,(r) 3_(r) 3_(r) _(r) (2.4.20)

where

_ (r)= _ a' fix _[V'G(r,r')][V'. (r/(r')fi' x J,,(r'))]dS'
2zrk0 s

_(r) = Jk°hx _G(r,r')[r/(r')fi' xJ,,(r')]dS'
2zr

5

_(r) =---_-1 fix _V'G(r,r')xJ,,(r')dS"
• 27r

s

(2.4.21)

(2.4.22)

(2.4.23)
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and J,, is given by eq. (2.4.9). Interchanging the cross product operation with the

integration operation and making use of eq. (2.4.10) the expressions for 3_, 3_ and 3_

can be written as

J _a,_r,.'>[_×<r-r'_][V'.(,7_,">_'×a._r'>)]dS'
3_(r)= 2_/_:os

3 _ (r) = _ _ r/(r')G(r, r')[6 x (6' x J,, (r'))]dS'

1 G3"(,)=-_ _, (,,,')[_x(,- ,,)xa,,(,')]ds'

(2.4.24)

(2.4.25)

(2.4.26)

The rand _ components are obtained by taking the dot product ofeq (2.4.20) with _ and

respectively.

The magnetic field integral equation given by eq. (2.3.29) can now be written as

the following pair of coupled scalar integral equations.
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and

H_(r) = -1j,(r)

4_kosj _G_(r,r')I[zcos(A')-2psin2(A'/2)]sin(a)+ {cos(a)}

. {rl(r')_,n(a') + _}j,(r')dS"

J
+ _ jIG l (r,r'){[X cos(A')- 2psin2(A'/2)]sin(o0 + _ cos(a)}

S

4z-k0j _O(r')G_(r'r'){[2"c°s(A')- 2psin2(A'/2)]sin(a)+ _c°s(a)}s

s_cgJ_(__r ") 1 olJ,(r')_dS,
[as p' _'J

- Jk---°-°_ o(r')G(r, r')[cos(a) cos(a') + sin(a)sin(a') cos(a')]J 0(r')dS'
4z s

jko , , , , ,

--_- ! r/(r )G(r,r )sin(a)sin(A )J_(r )dS

1 jIG1 (r, r')[p' sin(o:) cos(o:') -/9 sin(o:') cos(a)
4z s

- _ sin(a) sin(a')] sin(A')J_ (r')dS'

_ 1_/__J[G_ (r,r'){[2' cos(a)- _sin(cx)]cos(A')
4z s

+2 p' cos (a') sin 2(,%,/2)} J, (r')dS'
(2.4.27)
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H_(r) = 1 JAr)

J j-,.,_f'-:-(r,r')p'sin(A') r/(r' " (a') J_(r')dS"
4_ko s

+ J-J'-'[G,(r'r')p'sin(A'){'p, C)OJ_,')} J,(r')dS'4.0

J _r/(r')G,(r,r')p'sin(A')_, r')I lOJ_,')} "S'4_o s t o_ p'

jko
r/(r')G(r, r') sin (_x') sin(A') J_ (r')dS'

4_ s

+ Jk°_rl(r')G(r,r')cos(A')J,(r')dS'
4_r

1
G] (r, r')_ sin(A')J, (r')dS'+--

47r s

1 _G1 (r, r'){[Z cos(a') - _sin(o_')] cos(A')
+4-__s

-2 p cos(a') sin 2(A'/2)}J, (r')dS" (2.4.28)

where 2' = P' - P, _ = z' - z and dS" = p'd(D'ds' for a body of revolution.

Finally, from eq. (2.2.5) the z and _ components of the incident magnetic field

can be written as

H_(r) = 1--_{sin(O,)sin(v)cos(oO
z0

- sin(a)[cos(0, )cos(Ai)sin(v) + sin(A/) cos(v)]}e -_v '

H_(r) = _o[COs(A,)cos(v)-cos(O_)sin(A_)sin(v)]e-_""

(2.4.29)

(2.4.30)

where k _. r is given by eq. (2.4.19).

2.4.4 Combined Field Integral Equation

Since the combined field integral equation for an arbitrarily shaped scatterer,

was constructed from the electric and magnetic field integral equations for an arbitrarily
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shaped scatterer it is reasonable to assume that the combined field integral equation for a

body of revolution can be derived from the appropriate combination of the electric and

magnetic field integral equations for a body of revolution. In order to do this we must first

determine the 1:and ¢ components of the combined field integral equation.

The rcomponent of the right hand side of eq. (2.3.36) is given by

(2fi x (Hi(r)- _0------_Efix Ei(r)// = '_. (2fi x (Hi(r)- acre fix E_(r)))
,,/,g Z0

(2.4.31)

The • component of the left hand side of eq. (2.3.36) is given by

= IJo]-= " ZoaxL,tJ..])

=(L.[J..]).(L:J..]),
Zo

(2.4.32)

Then, the r components of the combined field integral equation is given by

Z°H_(r)+ otcraFE_(r)='_(Ln[J"]), acnE(LEIJ"])*2 (2.4.33)

where _(Ln[J,]), is given by the fight hand side of eq. (2.4.28) and -_(LE[J,,]), is

given by the fight hand side of eq. (2.4.16).

The ¢_component of the fight hand side of eq. (2.3.36) is given by

(2fi×(H_(r)_ OtCnE fi×Ei(r)// =_'(2fi×(H_(r)-_-fixE_(r)))
Z0 ...,_

(2.4.34)
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The¢ componentof theleft handsideof eq. (2.3.36)is givenby

(LetS..]),=_, (LctJ..l)

"-_ t"tS"]-_- _a×L_tS"]lZo

--(L.tJ.,]),+Z-_(LEtJoJ)_

(2.4.35)

Then, the 0 components of the combined field integral equation is given by

, _ a_ (L:j..]),ZoH_(r)-acmE_(r)=- (L.[J.,]). (2.4.36)

where -½(LH[Je,]), is given by the right hand side of eq. (2.4.27) and _(LE[Je,])_

given by the right hand side of eq. (2.4.15).

2.5 Far Field and Radar Cross Section

2.5.1

is

Far Scattered Fields

In the far field the scattered electric and magnetic fields can be written much

more simply [Elliott, 1981] as

E'(r) = -ja_(Aer (r) - Z0_"x A,.r (r))

H'(r) = -jto(A,.r (r) + Y0_ x A,r (r))

(2.5.1)

(2.5.2)

where Aer and A,, r are the transverse (to _') components of the electric and magnetic

vector potentials and are given by the following expressions

A,r(r) = A,(r)- _(_.A,(r))= oa,o(r)+ _,,(r)

A.r(r) = A. (r)-_(_. A. (r))= 0A_o(r)+ _t., (r)

(2.5.3)

(2.5.4)

where _, 0 and _ are the usual unit vectors form the spherical coordinate system. The

free space Green's function can also be simplified in the far field region. When Irl is
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much larger than [r'[ the I[R factor, which represents the magnitude of the free space

Green's function, can be simply approximated by 1/r. For the R factor which appears in

the complex exponential, the following more exact approximation must be used

g =lr-r'l= r-_.r'= r- Z

where, in cylindrical coordinates,

f_.,= [. r' = p'cos(A')sin(0) + z'cos(0)

(2.5.5)

(2.5.6)

Thus in the far field the vector potentials can be written as

A,(r) /-to e -_k°'§ , )koL ,-- J,,(r )e dS (2.5.5)
4_ r

S

e'° e-_k°r _J,,_(r')e_k°L dS ' (2.5.6)A'_(r) = 4_ r
S

Substituting eqs. (2.5.3) and (2.5.4) into the far field expression for the scattered

field given by eq. (2.5.1) the /9 and g} components of the scattered electric field can be

written as

E_ (r) = -joa4,e (r) - jcaZoA_¢ (r)

E_(r) = -jca4. (r) + jO:ZoAmo(r )

(2.5.7)

(2.5.8)

Using the far field forms of the vector potentials given by eqs. (2.5.5) and (2.5.6) the

components of the scattered electric field given by eqs. (2.5.7) and (2.5.8) can be written

as

F 2 1E_(r)= e-'*°_ -Jk° _[ZoJ_e(r')+ J',(r')]eJk°_dS ' = e-'_°---_"Se(O,¢) (2.5.9)
korL 4_r _ j kor

" _ - Jko , , =Ej (r_= e-ik°r • 2
kor ZoJ_,(r )- J'o(r') eYe°LdS ' e-'*°' S,(O, rp) (2.5.10)• ko r

where
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J_o (r') = O. J,_(r')

J', (r') = _ ._J_(r')

J'o(r')=O. J=,(r')

J,',(r') = _. J,,(r')

(2.5.11)

(2.5.12)

(2.5.13)

(2.5.14)

and Se(O, _) and S_(O,_) are called the far field scattering (pattern) coefficients.

Making use of the expression for J,(r') given by eq. (2.4.9) and the expression

relating J,,_ to J,, given by eq. (2.3.25) the transverse components of the scattered

electric field can be written as

Eg(r) =

E_(r) =

jk:oZoe-j_°"_{[cos(e)sin(a')cos(A') - sin(e)cos(a')
4zr kor s

+ r/(r') cos(A')]J, (r')

-[cos(0)sin(A') + O(r')sin(a')sin( A')]J, (r')}e _k°L

JkZ°Z° e-Jk°_ _{[sin(a')sin(A')+ r/(r')cos(0)sin(A')]J,(r')
4re kor s

+ [cos(A') + r/(r') cos(0) sin(a') cos(A')

- r/(r')sin(0) cos(a')] J, (r')}e _k°zdS'

(2.5.15)

dS"

(2.5.16)

2.5.2 Radar Cross Section

In the far field, the scattered fields can be written in spherical coordinates as

e -kor r^ ^

E'(r)=OEo(r)+_E;(r)=_or [OSo(O,¢)+,S,(O,¢) ] (2.5.17)

where Se(O,O) and S,(O,¢k) follow from either eqs. (2.5.9) and (2.5.10) or eqs. (2.5.15)

and (2.5.16). The bistatic radar cross section (differential scattering cross section) is

defined as [Bowman et. al., 1987]

tr(0,¢) = lira 4ztr 2 EL_ (2.5.18)
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Assume a unit amplitude for the incident electric field

eq. (2.5.17) the magnitude of the scattered field is given by

_'l_- E'.E"=(_0_)'IS°(O'_)I=÷Is'(o'_)

(i.e. IEi[ = 1). From

(2.5.19)

Then, the radar cross section can be written as

[ ' Jtr(0,¢0 = lim4trr 2 S°(0'¢_ (0,_)
,-.- k = s_(°'_)[_+ s'(o'e_)_ (2.5.20)



3. NUMERICAL METHODOLOGY

3.1 Introduction

This section covers the techniques used to find a numerical solution of the

integral equations derived in Chapter 1. The integral equations are solved using the

method of moments [Harrington, 1968]. Since the scatterer is a body of revolution the

surface of the scatterer can be mapped to a rectangular region in the s-¢_ plane where s is

the arclength coordinate and ¢_is the usual cylindrical coordinate. The rectangular region

in the s-_ plane is subdivided into many smaller rectangular subregions or patches. On

each patch the components of the surface current J,s(s, CD)are expressed in terms of a

linear combination of two-dimensional Hermite expansion functions. This choice for the

expansion functions permits the use of delta functions for the testing (weighting)

functions in the method of moments.

3.2 Method of Moments

The electric field integral equation, the magnetic field integral equation and the

combined field integral equation as by eqs. (2.3.32), (2.3.33) and (2.3.36) all have the

following general form [Poggio and Miller, 1973]

L[F(x')] = G(x) (3.2.1)

where F is an unknown vector function, G is a known vector function and L is a linear

operator. Construct an approximate solution for F(x) from a linear combination of known

expansion functions as follows

N

F(x) = f(x) = _'_a.f,,(x)
nffil

(3.2.2)

where a n are constants to be determined and {f_(x)} is a set of N known expansion

(basis) functions.

Define a residual error function _(x) as

27
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_(x) = L[f(x')] - C(x)

Substituting eq. (3.2.2) for f in eq. (3.2.3) and interchanging

integration the residual error can be written as

_(x) = _ a.L[f_(x')]- G(x)
n=l

Next, define an inner product over S of two vectors x and y as

(x,y)=ffx.ydS
s

(3.2.3)

the summation and the

(3.2.4)

(3.2.5)

Now choose a set of M weighting (testing) functions {w,.} and require that the inner

product of the weighting functions and the residual error satisfy the following condition.

N

(w.,_)- Z (w.,Ltf._x'_l)-(w.,G)- o
n=l

(3.2.6)

Eq. (3.2.6) can be written in matrix form as

ZI=V

where the elements of Z, I and V are given by

W Pz..=( .,/4f.(x )j)
I n --a n

v.=(w.,G)

(3.2.7)

(3.2.8)

(3.2.9)

(3.2.10)

The solution to the integral equation can now be found by solving the linear system of

equations given by eq. (3.2.7)

The set of expansion functions {f, } can be completely arbitrary as long as they

exist in the domain of the operator L. Similarly, the testing functions {w,} can be

completely arbitrary as long as they exist in the range of the operator L. In the problem
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under considerationevaluating the linear operatorapplied to an expansionfunction

L[f,(x')] and evaluating the inner product (w,,,L[fn(x')]) both involve an integration

over the domain S where S is the surface of the scatterer. Therefore, the conditions on the

expansion and testing functions can be stated more simply as a requirement that they be

either non-zero over the entire surface of the scatterer (i.e. entire domain S) or at least

non-zero over a small portion (i.e subdomain) of the surface of the scatterer. When the

expansion or testing functions are defined over the entire domain S they are called entire-

domain basis functions. When the expansion or testing functions are defined over a

subdomain of S they are called subsectional basis functions. The actual selection of the

expansion and testing functions is influenced by such factors as the desired numerical

accuracy, geometry of the problem and expected behavior of the unknown function.

3.3 Description of Scatterer Geometry and Surface

Impedance

In the computer program implementing the solution of eqs. (2.3.46), (2.3.47)

and (2.3.50) the two profile functions and the relative surface impedance are numerically

represented by cubic spline interpolation functions [deBoor, 1978]. Since a cubic spline

interpolation has continuous first and second derivatives it can not be used to describe a

function which is discontinuous or has discontinuous derivatives. For these cases, it is

necessary to use more than one spline function to represent the desired function. When a

function is represented by more than one spline function, the individual spline functions

are referred to as spline meta-segments. The use of spline meta-segments permits the use

of a generating curve which produces a surface having geometrical discontinuities (i.e.

edges) and allows for the use of a discontinuous surface impedance. Note, the spline

functions used for the generating curve and the spline function used for the surface

impedance need not be defined over the same set of spline meta-segments. For example,

for a spherical scatterer with a relative surface impedance 77= 1 for the hemisphere z > 0
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and 17= 0 for thehemispherez < 0 theprofile functionsp(s) and z(s) would be defined

using a single meta-segment while the relative surface impedance 17= r/(s) would require

two meta-segments.

Finally, the spline description used for the profile functions and the surface

impedance is particularly useful when it is necessary to evaluate the first and second

derivatives of the profile functions. For example, it is not necessary to explicitly provide

the function a(s) since it only appears in the integral equations in the form of sin(a) and

cos(a) and these functions are readily available if one makes use of the following:

dz
cos(a) = -- (3.3.1)

ds

sin(a) = dp (3.3.2)
ds

Similarly, where needed the derivatives of the surface impedance can be easily evaluated.

3.4 Hermite Expansion Functions

Suppose that for some unknown function f(x) we are given the values of f(x),

df/dx and possibly higher order derivatives evaluated at a set of points {x, }. The process

of determining a polynomial interpolation of f(x) which matches these conditions is

called Hermitian interpolation [Lancaster and Salkauskas, 1986].

Consider the problem of finding an interpolation for f(x) on a single interval

[x_, x_÷_]. Given the following values

n X----- X_I

n+l x=x_. l

(3.4.1)

the function f(x) can be approximated in the interval [x,,x,÷_] by the following

expression



f(x) = f._,,(x)+ f.'llt,,(x)+ f.+lO.+l(x)+ f.'+l_.+1(x)
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(3.4.2)

where 0. (x) and _.(x)are cubic Hermite expansion functions given by

tli,l lx, '2:xx,
t--L--7-.) t )

if x.__ <_x<_x,,

ifx. ___x -<x.+ l

qt.(x) =

2

x-x._<x
X -- Xn+ 1

(x- x.) ax.

if x.__ < x _<x.

if x, _<x _<x,+ 2

(3.4.3)

(3.4.4)

and Ax. = x.+_-x.. This is the simplest polynomial interpolation for f(x) which

satisfies the boundary conditions given by eq. (3.4.1).

Using the following properties for ¢,(x) and V.(x) it is easy to show that the

expansion for f(x) given by eq. (3.4.2) satisfies the boundary conditions specified in

eq. (3.4.1).

#_.(x.) - 1

¢i.(x.__) = O.(x.+:) = 0

qt.(x.__) = qt.(x.) = qt.(x.+_) = 0

:(do.) :o
dx)._l tdx). k_).+l

dip'. _ =1

dx).

dx ).-1 . dx :.+l

(3.4.5)

If the values of f(x) and df/dx are given for a set of values {x. } the Hermitian

interpolation for f(x) is given by

f(x)= _ F.(x)= _.,f.O.(x)+ f'V,(x) (3.4.6)
Pl ¢t
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where

V.(x) = LO.(x)+ fN.(x) (3.4.7)

is the Hermite expansion of f(x) at the point (node) x =x.. Note, the forms of

eqs. (3.4.2) and (3.4.6) appear to be quite different but the are fundamentally the same.

Eq. (3.4.2) is simply an expansion for a single interval while eq. (3.4.6) is an expansion

over multiple intervals. Associating the expansion functions with the nodes makes it

possible to construct an expansion for a function which is discontinuous or has

discontinuous derivatives. For example, if f(x) is known to have a discontinuous first

derivative at x = x. then F. (x) can be written as

_LO.(x) + fL_'.(x)
V"(x)=[f.O.(x)+ fLa.(x)

where

if x < x.
(3.4.8)

ifx>x.

f._, = lim df and f,_, = lim df
x--,x_ dx' x--,_: dx (3.4.9)

Similarly, if f(x) is discontinuous at x = x. then F,(x) can be written as

+ '..... ff.,tO. (x) f_,,tllt. (x) if x < x,,
r._x) =

_f.,.¢. (x) + f.,.Ig. (x) if x > x.
(3.4.10)

where

f.j = lim f(x),

and f.'.l and f._, are given by eq. (3.4.9).

f_,r = lim f(x) (3.4.11 )
X -4P .lr_

3.5 Hermite Expansion Functions on Rectangles

For the rectangular region shown in Figure 3.5.1 two-dimensional Hermite

expansion functions can be obtained from the products of the one-dimensional Hermite

expansion functions. Define the two-dimensional Hermite expansion functions as follows
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H_.,,,(x, y) = ¢),,(x)_p,,,(x)

H_,,,,(x, y) = O,,(x)lllm(x)

H_,,,,(x, y) = II/.(x)gp,,,(x)

n4,.,,,,(x, y) = IIl,,(x)V,,,(x)

(3.5.1)

(3.5.2)

(3.5.3)

(3.5.4)

where _. and g/. are the one-dimensional Hermite expansion functions given by

eqs. (3.4.3) and (3.4.4). The two subscripts n and m indicate that these expansion

functions are associated with the point (x.,ym) (n,m'th node). The superscripts 1, 2, 3 and

4 are used to indicate that a particular expansion function is associated with the following

values

Of off .e?2ff, Oy' Ox' OxoS,

evaluated at the n,m'th node.

Figure 3.5.1

Let

(x., Y,_+1) (x_+2,Y,,_1 )

(x_,y,_) (x_+_,ym)

r

x

Domain of two-dimensional Hermite expansion functions.

fi._ = f(x,y_,,.,,,,y.,, (3.5.5)

(3.5.6)
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of
(3.5.7)

(3.5.8)

Using the expansion functions defined by eqs. (3.5.1), (3.5.2), (3.5.3) and (3.5.4) a

function f(x,y) can be approximated in the region x. < x _<x.+_, y,. < y < y,,+_ by the

expansion

where

f(x,y) = F.,,.(x,y)+ F.,,.+ifx,y)+ F_+1,,.fx,y)+ F.+l,,,,+1(x,y)

1 I

=ZEF..,.,+,(x,y)
k=0 I=0

(3.5.9)

(off) H_(x,y)F/,j(x,y)=f,:H,1,:(x,y)+_ i,_ '

tti,i(x,y)+ _ ttio(x,y )
,,j OxOy

(3.5.10)

is the Hermite expansion of f(x,y) at the i,j'th node.

As was the case with the Hermite expansion of a function of one variable, it is

possible to construct a Hermite expansion for a function of two variable which is

discontinuous or has discontinuous first derivatives. The only restrictions is that the

discontinuities must lie along values of constant x or constant y. For example, if 0f/dr is

discontinuous along x = x_ then the expansions at nodes along x = x_ have the following

form
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where

Fi,:(x,y) =

Of) H_j(x.r)fi'jH:'j(x'Y) + "_ i,j

(Of) H3(x,y)+(O2f ).,. Hi4i(x,y)

(Of) H_,(x,y)y,.H:,_(x,y)+-_ ,,J

(Of) H:4(x,Y)+: O2f "] Hi:j(x,y)+ _ ,... tOxOyJ,,.

(Of) = limof ( o2f _ = lim °72f
,..,=-.x:Ox tOxOyJ,,:.,y:,,

Y=Yj

(Of) =lim_ (O:fl =lim 02f,,. =-+': t_x_yj,... -.=: _
Y=Y7 Y=Y)

if x< x,

ifx > x, (3.5.11)

(3.5.12)

(3.5.13)

Similarly, if f(x,y) is discontinuous along x = x i the Herrnite expansions at nodes along

x = xi have the form

/ i,j

i,j,l

(Of) H:4(x,y)+(°32f ) H:j(x,y) ifx<x,+ _ ,.., " t_x#),,. '
F_,j(x,y) = H''x "+(Of]

:i,j,,/,jr,Y) tgJ H_'i(x'Y)
x -- / i,j,r

Of
His(x,y)+ _ H_,j(x,y) ifx > x_ (3.5.14)

+ _ ,.,.' o_Oy,,:,,

where

f.j,i=limf(x,y) (_) = limof (3.5.15)
X--,_X i
y=yj i,j,l x.-_x[ 0/_

Yffi Y _

yfy_ i,j,r x.-_x]
Y=YJ
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Similar expressions can be found for the cases when f(x,y) or off/dy are discontinuous

along y = y_ or discontinuous along both x = x i and y = Yr-

3.6 Expansion of Surface Currents

Using s-0 coordinates the surface of the scatterer can be mapped to the region

0 < s < Sm_x, 0 < 0 < 2n" in the s-0 plane. Keep in mind that since we are considering

bodies of revolution the points (s,0) and (s,27r) in the s-0 plane correspond to the same

point on the surface of the scatterer. This is a result of the surface of the scatterer being

periodic in 0 with period 27r. Therefore, we also expect any function defined over the

surface of the scatterer, such as the components of the surface current, to be periodic in 0

with period 2n'. Also, note that points along s = 0 represent the same physical point on

the scatterer. However, the components of the surface current, J, and J, are in general

not constant along s= 0 since the unit vectors _ and t_ and hence J_ and J, are

functions of _p.These same considerations also apply to points along s = s_.

The domains(patches) over which the expansion functions for the components

of the surface are defined are constructed by dividing the region 0 < s < Sm_x, 0 < 0 < 2_r

as shown in Figure 3.6.1. There are N, - 1 intervals along the s-axis and N, - 1 intervals

along the 0-axis for a total of (N s - 1)(N, - 1) patches and a total of N,N, nodes. The

patches are numbered so that the upper left hand corner of the i,j'th patch as shown in

Figure 3.6.1 has the coordinates (s,0_). The components of the surface current can be

written as

M s N_,

i=I j=l

N s N_

i=1 j=l

(3.6.1)

(3.6.2)
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where J_,_,j and J,,i,j are the Hermite expansions of J_ and J, at the point (s_,¢j) (i.e.

i,j'th node) and have a form similar to either eq. (3.5.10), (3.5.11) or (3.5.14). The

particular form of the nodal expansion functions will depend upon both the local

geometry of the scatterer and the continuity of the surface surface at each of the nodes.

$1 $2 "'" Si 5i+1 "" $N,-1 SN,

¢

Figure 3.6.1

/ i,j'th patch

J

Expansion function domains for components of the surface
current.

Now consider the nodes along the line s = 0 in the s-O plane when ct(0) = zr/2.

For this case the scatterer is smooth and has a well defined normal at the point s = 0. The

point s = 0 on the surface of the scatterer maps to the line s = 0 in the s-¢ plane. This is

due to the fact that the unit vectors _ and 0 are not uniquely defined at the point s = 0.

However, since all the points along s =0 represent the same physical point on the

scatterer it is reasonable to assume that the coefficients for the expansion functions

associated with nodes along s = 0 are not completely independent. The relationships

between the coefficients can be determined by selecting one or more coordinate systems

which have uniquely defined coordinate vectors at s = 0.
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Construct a new local coordinate system on the surface of the scatterer in the

neighborhood of s = 0 as shown in Figure 3.6.2. Define a new arclength parameter s ° and

a new tangent vector _" as follows

s" = _" s when 0 = Oo

L-s when 0 = Oo + a"
(3.6.3)

^. _ $ whenO =Oo

'c = 1 -$ when 0 = Oo + n"
(3.6.4)

Figure 3.6.2 Construction of local coordinate system at s = 0.

Since the generating curve is smooth at s °=0 the _" component

continuous at s" = 0. This condition can be stated mathematically as

lim '_'. J,,(s',O) = lim '_'. J_fis',O)
$'.-_0- $* '-4'0 +

$=$o+n $=%

of J,, must be

(3.6.5)

Using the definitions of s" and $" eq. (3.6.5) reduces to

lim J,(s,O) = - lira J,(s,O)
$..._0" S-'_O*

$=$o +_ $=$o

(3.6.6)
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Since a(0) = zr/2 da/ds* is continuous at s ° = 0. Therefore, the derivative of the $"

component of J,, with respect to s ° at s ° = 0 must also be continuous. This condition can

be written as

_1_ ,_.

lim _-'rx .J,,(s',O)= lim _r._'.J,,(s',O)
$''-_0- $* .--_.0+

_=¢o+a 4J=_o

(3.6.7)

For s'< 0 we have '_'=-$, s*=-s and ffd," =-_

s* = s and _. = _. Therefore, eq. (3.6.7) reduces to

and for s" > 0 we have $" = "_,

lim °l lim o_
,-.0- L(s,¢) =,_.0.TssL(s,0)
#=0o +n ¢=¢o

The results given in eqs. (3.6.6) and (3.6.8) imply the following:

lim _ J_(s,O) = - lim _ J,(s,O)
,_;OoL,a¢, ,-.0-- 4*=00

02 02

lira O-_J_(s,O)- lim_-_J_(s,O)s_O" s_O"

_=_o+tr 4m=_o

(3.6.8)

(3.6.9)

(3.6.10)

For the O component of the surface current define a new angular vector O" as

follows

when ¢ = #o

when 0 = 00 + n:
(3.6.11)

Like the component of the surface current in the z'" direction the component in the O*

direction must also be continuous at s ° = 0.

lim _'.J,,(s°._)= lifo._" .J,,(s',_) (3.6.12)
8°_,_0 -

_=_o +_" ¢=¢o

Using the definition for _" the condition on the continuity of the 0" component can be

written as
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lim J,(s,¢_) = - lim J,(s,¢_)
8--_0+ 8--_0"

$=$o+n $=$o

(3.6.13)

Since the geometry of the scatterer is smooth at s = 0 the derivative of the g_" component

of J,, with respect to s ° should be continuous at s" = 0.

lim _-s_, _ ". J,,(s*,¢)
8°--I,0-

$=$o +_r

= lira •J,$(s',¢)
$°_.4,0 ÷

$=$o

(3.6.14)

Since _'=_ and fro,. =-_ for s'<0 and _°=$ and _.=_ for s'>0 eq. (3.6.14)

simplifies to

lim -_0 J_(s,g))= lim °l
,--,0- _,_ $--,o--_s J_(s'r_) (3.6.15)
$=$o +_ $=$o

The results given in eqs. (3.6.13) and (3.6.15) imply that the following is also true.

lim 0 J_(s,_p)= - lim _-_ J_(s,g))s .-.*O" "_ s..._,O"
$=$o +Tr $=$o

0 2 0 2

lira -_---_ J.(,.O) - l'mlo -g--s--_J.(s. _)
$=$o +n $=$o

(3.6.16)

(3.6.17)

If O_(Sm_) = -_r/2 then the results given by eqs. (3.6.6, 8-10, 13, 15-17) also apply in the

limit s _ s_, that is, at the point s = Sm_. For nodes along s = 0 (s = Sm_) whenever

a(0) = zt/2 (o_(s,,_)=-re/2) eqs. (3.6.6), (3.6.8), (3.6.9) and (3.6.10) can be used to

reduce the number of unknowns per node associated with J, from 4 to 2. Similarly,

eqs. (3.6.13), (3.6.15), (3.6.16) and (3.6.17) can be used to reduce the number of

unknowns per node associated with J, from 4 to 2 for all nodes along s = 0 (s = S,r_)

whenever a(0) = _r/2 (O_(Sm_) = - 7r/2 ).

If a(0)_Tr/2 the scatterer starts with a sharp point. This geometrical

singularity will results in a possible singularity in J, at s = 0 while J, will remain

continuous at s = 0. However, since there is not a well defined surface normal at s = 0
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we can not construct a local coordinate system at s=0 and hence we can not

geometrically determine the behavior of either J,, J, or their derivatives in the limit

s _ 0 ÷. These same considerations also apply at s = s_,_ when a(s_) _ -7r/2. In either

of the two cases eqs. (3.6.6, 8-10, 13, 15-17) can not be used to reduce the number of

unknowns and 4 unknowns per current component must be used at each node along s = 0

or s = s_.

3.7 Selection of Sampling and Integration Points

Since Hermite expansion functions belong to the class of functions with C _

continuity (i.e. continuous first derivatives) the use of delta functions as the testing

functions is allowed [Chap. 11, Vichnevetsky, 1981]. From eq. (3.2.13) it can be seen that

employing delta functions as the testing functions is equivalent to sampling the integral

equation at some arbitrary point on the surface of the scatterer. Since the domain of the

testing functions is the surface of the scatterer the sampling points must be located on the

surface of the scatterer. In addition, since the domains of the expansion functions are a

subregion of the entire surface, the locations of the sampling points must be distributed

over the surface of the scatterer in order to to include the effects of all the expansion

functions. That is, if there are N unknown coefficients then the sampling points must be

chosen to produce N linearly independent equations in terms of the unknown coefficients.

Using delta functions as the testing functions, consider the method of moments

solution to eq. (3.2.7) for the simple case where F and G are the scalar functions f(x)

and g(x) respectively. For the interval [x_,x_] let the expansion of f(x) have the form

given by eq. (3.4.6). Assume that at each node x,, n = 1..... N in the interval [x_,xN] the

function fis continuous so that the nodal expansion functions F, have the form given in

eq. (3.4.7). Since there are two unknowns per nodal expansion function, the total number

of unknowns is 2N. The elements of Z and V given in eqs. (3.2.8) and (3.2.10) are

determined by sampling L[f(x')] and g(x) respectively at 2N points in the interval
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[x_,xN].Sincethe expansionfunction at the n'th node is only defined for the interval

[x.__,x.÷_] the two sampling points associated with the unknown coefficients from the

nodal expansion function at x = x. must be located somewhere in the interval [x.__,x.,_].

Since a nodal expansion function contributes to the overall value of f(x) on both sides of

the corresponding node, the locations of the sampling points associated with the n'th node

are chosen so that one sampling point is located in the interval [x.__, x. ] while the other is

located in the interval [x.,x.÷_]. The exception to this rule occurs for the first and last

intervals. Since a solution is desired only for the interval [x_,X_v] it is not logical to locate

sampling points outside of this interval. Therefore, the sampling points associated with

the first and N'th nodes can only be located in the intervals [xa,x2] and [xu__,xN]

respectively. The required distribution of sampling points points is shown in Figure 3.7.1.

If the values of for df/dx are known at the endpoints or boundary conditions forfand

df/dx are specified at the endpoints then it may be possible to reduce the number of total

number of sampling points in the first and last intervals from three to two.

Figure 3.7.1 Location of sampling points for a continuous function.

Circles represent nodes; crosses represent sampling points.

If df/dx is discontinuous at x = x_ then a nodal expansion function of the form

given in eq. (3.4.8) must be used at the i'th node. This introduces an additional unknown

coefficient for which an additional sampling point must be chosen. This additional

sampling point must be located at the point x = x_ as shown in Figure 3.7.2a. If f(x) is

discontinuous at x = x, then the nodal expansion function at the i'th node has the form
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given by eq. (3.4.10). This choice for the nodal expansionfunction introduces two

additional unknown coefficients into the problem. While there are four unknown

coefficientsassociatedwith the i'th node two of the coefficients only contribute to fin the

interval [xi__,xi] and the other two coefficients only contribute to f in the interval

[xi,x;+_]. Therefore, the two of the four sampling points associated with the i'th node are

located in the interval [xi_l,x_] while the other two sampling points are located in

[x,, x,÷l ] as shown in Figure 3.7.2b.

The distribution of sampling points for the two-dimensional problem is based on

the distributions found for the one-dimensional problem. For example, consider a two-

dimensional function f(x,y) where f and _/Oy are always continuous in y, 0f/tax is

discontinuous in x at x = x, andfis discontinuous in x at x = x_. Construct a new one-

dimensional function f(y)= f(xo,y), where x0is a constant. Since f(x,y) and Of/oay are

always continuous in y, f and _/0y are also continuous in y. Therefore, the distribution

of sampling point along the y direction should be chosen as shown in Figure 3.7.1. For the

sampling points in the x direction construct a new function f2(x) = f(x,y o) where Y0 is a

constant. Since 0f/tax and f(x,y) are discontinuous at x = x_ and x =x i respectively

0f2/tax and f2 will also be discontinuous at x = x_ and x = x_ respectively. Therefore, at

nodes where f2 and Of2/oax are both continuous choose the sampling points as shown in

Figure 3.7.1; at nodes where 0f2/oax in discontinuous choose the sampling points as

shown in Figure 3.7.2a; and at nodes where f2 is discontinuous choose the sampling

points as shown in Figure 3.7.2b.

In principle, the sampling points can be located anywhere in the interval.

Numerical accuracy is improved if they are located at the points used for Gaussian

integration [Chap. 11, Vichnevetsky, 1981]. Sampling at the Gaussian points is referred

to as orthogonal collocation. The drawback in using orthogonal collocation results from

the complexity it introduces to the choice for the numerical integration rule.
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xi-1 xi xi+l

(a) (b)

Figure 3.7.2 Location of sampling points for discontinuous functions. (a)
df/dx is discontinuous at x = x_,(b) f(x) is discontinuous

at x=x i. Circles represent nodes; crosses represent
sampling points.

'/'he free space Green's function, G, which appears in the integral equations is

singular whenever the observation point (i.e. sampling point) and integration point

coincide. The free space Green's function appears in three forms in the integral equation,

as GF the scalar product of G and a vector function F, as fVG the product of the scalar

function f and VG and as VG × F the vector cross product of VG and a vector function

F. Analytically, if F is non-singular then the integral of GF over a surface is always

convergent [Kellog, 1953]. However, there are convergence problems associated the

numerical integration of a function such as GF even when it has been established

analytically to be integrable. Analytically, the integrals of fVG and VGx F over a

surface are, in general, not convergent. However, the problems associated with these two

singular integrals have been accounted for through the use of the concept of principle

value integrals.

With this in mind, there are two general possibilities for the choice of the

locations of the sampling points and integration points. The sampling points and

integration points can be chosen so that there is a possibility that they will be coincident

or they can be chosen so that they are never coincident. If the sampling and integration

points are allowed to be coincident then some provisions must be made in the numerical
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integrationroutineto detectthecasewherethetwo pointsarecoincident.Forthe integrals

of GF the integration in the vicinity of the singularity is either replaced by a numerical

integration rule specifically designed to handle this type of singularity or evaluated using

an approximate analytical expression for the integral. For the integrals of fVG and

VG x F, since the effects of their singularities have already been accounted for through

the use of the principle value integrals, the integrands can simply be set to zero whenever

the integration and sampling points are coincident. A simpler procedure is to select the

sampling and integration points so that they are never coincident. Then, the numerical

integration does not have to check for the possibility of a singular integrand. There is

some loss of numerical accuracy if the singularity of GF is not considered explicitly.

However, this effect can be minimized by selecting the integration points so that they are

symmetrically placed around the sampling points.

It is relatively easy to construct a numerical integration rule which will avoid

selecting integration points which are coincident with the sampling points. Integration

over a surface patch is performed by dividing the patch into a number of square

subpatches. The center point of each patch is referred to as an integration point. On each

integration subpatch the value of the integral is approximated as the product of the area of

the subpatch times the value of the integrand evaluated at the integration point for the

subpatch. Let Nln_ be the number of integration intervals along the x and y axes.

Assuming that the integration is being performed over the normalized patch -1 < x < 1

and -1 _<y _<1 the numerical integration rule just described corresponds to selecting the

two sets of weighting coefficients {w_} and {wyt} for a two-dimensional numerical

integration rule as

2

Wa: = Wa Nint (3.7.1)

where k = 1..... N,n , and selecting the two sets of integration points {xk} and {y_} as
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2k-1
xk - Yk = 1 (3.7.2)

iv,o,

where k = 1..... N,. t . If the value of Ni. t is restricted to a multiple of 4 and the possible x

and y coordinates of the sampling points in the normalized patch are restricted to the

values -1/2, 0 and 1/2 then the integration points and the sampling points will never be

coincident. Note, using this scheme for the selection of the sampling and integration

points does not permit the construction of a solution which is discontinuous at both ends

of an interval.



4. NUMERICAL RESULTS

4.1 Organization of Computer Code

The computer code is divided into five distinct programs. Depending on the

choice of the geometry, a total of four programs will actually be used. The programs are:

1. CNSPH3

2. CNCL3

3. PREMOM3

4. MOM3

5. PSTMOM3

The first two programs, CNSPH3 and CNCL3, are used to define the geometry for the

cone-sphere and cone-cylinder scatterers respectively. The cross sections for both of these

geometries are shown in Figures 4.1.1 and 4.1.2. Note that a spherical scatterer is a

special case of both these geometries. Also, the cone-cylinder-sphere geometry can be

generated as a particular case of the cone-cylinder geometry. The output from each of the

two geometry programs is the cubic spline description for the generating curve and a

cubic spline description for the surface impedance.

The program PREMOM3 reads the output file generated by one of the geometry

programs, generates a surface patch model of the scatterer and then generates any

remaining information needed to solve any of the three integral equations. PREMOM3

also generates some additional information used in the calculation of the far field

scattering coefficients and the bistatic radar cross sections. The function of PREMOM3 is

very similar to the mesh generating function found in commercial finite element

programs. However, as a mesh generator PREMOM3 is limited to generating a single

type of curved surface element only for geometries with body of revolution symmetry.

PREMOM3 generates two output files. The first file is an unformatted file containing the

surface patch model used by both MOM3 and PSTMOM3. This file also contains

47
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informationusedonly by PSTMOM3in the calculationof theradarcrosssections.The

second file is a formatted file containing a Fortran PARAMETER statement which

defines the absolute minimum array sizes needed by MOM3 and PSTMOM3. Using the

PARAMETER statement generated for a particular problem in MOM3 and PSTMOM3

will always result in the use of the absolute minimum amount of memory.

As it's name suggests, MOM3 implements a method of moments solution of any

one of the three integral equations presented in Chapter 2 using Hermite expansion

functions with delta function testing. MOM3 reads the surface patch model generated by

PREMOM3, generates the impedance matrix Z for the desired integral equation and then

solves the matrix equation given by eq. (3.2.7) for both TE and TM polarizations. Finally,

MOM3 generates an unformatted file containing the coefficient vectors for the surface

current belonging to the two orthogonal polarizations and a copy of the surface patch

model generated by PREMOM3.

PSTMOM3 reads the file generated by MOM3 and computes, for both

polarizations, the surface current at all integration points used in the evaluation of the

scattering coefficients. The far field scattering coefficients are then calculated for a

specified number of values for 0 and ¢. The scattering coefficients are then used to

calculate the bistatic radar cross section at the same values of 0 and ¢. Finally, the results

of all these calculations, the surface currents, the scattering coefficients and the radar

cross sections are written to a formatted file.

An attempt has been made to write the programs so that they adhere as closely

as possible to the Fortran-77 standard. The programs have been successfully compiled

without modification by a large number of Fortran compilers ranging from Watfor-77 and

Microsoft Fortran under MS-DOS to the cf77 compiler system under UNICOS.

Additionally, some time has been spent improving the computational efficiency of the

routine in MOM3 which generates the elements of Z (i.e. matrix fill routine). This effort

has been aimed mainly at writing a matrix fill routine which can be easily ported to vector
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supercomputerslike theCrayY-MP. Futureplansincludetheparallelizationof the code

for sharedmemoryparallelprocessorsystemslike theCrayY-MP andalsofor massively

parallelprocessorsystemslike theThinking Machines CM5.

B m
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h

Figure 4.1.1 Cross section of cone-sphere geometry

J

]_cyl _ I

J

h

Figure 4.1.2 Cross section of cone-cylinder geometry
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4.2 Sample Results

In this section the bistatic radar cross sections for two different cone-cylinder

scatterers with surface impedances which vary along both the s and _ directions will be

presented. All results have been obtained by solving the magnetic field integral equation.

Additionally, all solutions have used 4 integration points per interval in both the s and ¢

directions for a total of 16 integration points per surface patch.

The first three examples are for a cone-cylinder (see Figure 4.1.2) with

normalized dimensions kohcy_ = 3.0, k0r_y_ = 0.5, a_one = 21 °, korup = 0.1875, k0rj] = 2.0

and kors2 = 0.0. This geometry will be referred to as cone-cylinder 1. The normalized

arclength for this scatterer's generating curve is koS,=., = 4.6242. Results for three

different variations in the surface impedance of cone-cylinder 1 will be presented. For all

three examples the surface patches are generated using N, = 13 nodes in the s direction

and N 0 = 9 nodes in the _ direction. For the first example, the relative surface impedance

has a constant value of r/= 0 (i.e. perfectly conducting). The bistatic radar cross sections

for this constant surface impedance are shown in Figures 4.2.3 and 4.2.4. The radar cross

sections are for the case of oblique incidence with angles of incidence 0i = 0° and

0, = 450 and both TE and TM polarizations.

For the second and third examples using cone-cylinder 1 the relative surface

impedance in piecewise constant with two step discontinuities, one at kos = 0.7619 and

another at kos = 1.4949. The surface impedance for the second example is given by

! 0.0 < kos < 0.7619
rl(kos) = 0.7619 < kos < 1.4949 (4.2.1)

1.4949 < kos < 4.6242

while the surface impedance for the third example is given by
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0.0 < kos < 0.7619

0.7619 < kos < 1.4949

1.4949 < kos < 4.6242

(4.2.2)

A graphical picture of the surface impedances given by eqs. (4.2.1) and (4.2.2) are shown

in Figures 4.2.1 and 4.2.2 respectively. It can be seen from Figures 4.2.1 and 4.2.2 that

points with a normalized arclength coordinate kos in the range 0.7619 < kos < 1.4949 are

located on the rounded joint between the cone and the cylinder. The bistatic radar cross

sections for cone-cylinder 1 with a relative surface impedance given by eq. (4.2.1) are

shown in Figures 4.2.5 and 4.2.6. The bistatic radar cross sections for cone-cylinder 1

with a relative surface impedance given by eq. (4.2.2) are shown in Figures 4.2.7 and

4.2.8. The results presented are for TE and TM polarizations and angles of incidence

0i = O° and 0 i = 45 °.

The second cone-cylinder geometry has normalized dimensions kohcy_ = 4,

korcy I = l, O_cone= 26.565 °, ko% = korj2 = 0.25 and korjl = 0.75. This geometry will be

referred to as cone-cylinder 2. The normalized height for cone-cylinder 2 is h = 5.6910

and the normalized arclength of its generating curve is Sm_ = 6.8992. Two different

examples for the surface impedance will be used with this geometry. The first example

uses a constant relative surface impedance r/= 1 (i.e. perfectly absorbing). For this case

the surface patches have been generated using N, = 15 and N, = 13 which results in a

total of 168 surface patches and a total of 1584 unknowns in the method of moments

program. Results for the bistatic radar cross sections for this scatterer due to both TE and

TM polarized incident fields with angles of incidence 0_ = 270° and 0_ = 0 °, 45 °, 90 °,

1350 and 1800 are shown in Figures 4.2.10-19. The reason for choosing 0_ = 270 ° is so

that the results for cone-cylinder 2 with r/= 1 can be directly compared with the results

obtained for the next example.

The second example using cone-cylinder 2 uses a relative surface impedance

r/= 1 for the entire surface except for a rectangular region where the relative surface
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impedanceis 7"/=0. The surface impedance for this example is given by the following

expression

rt( s, ¢) = 1- f,(k0s)f,(¢) (4.2.3)

where the functions f, and f, are given by

fs(k0s)=ti

0 < kos < 3.1835

3.1835 < kos < 4.6835

4.6835 < kos < 6.8992

f, (¢) = {!

0 < ¢_< zr/4

tr/4 < _0< 3a'14

3n'14 < _0< 2n"

(4.2.4)

(4.2.5)

A side view of cone-cylinder 2 with the surface impedance given by eq. (4.2.3) is shown

in Figure 4.2.9. Results for the bistatic radar cross sections for cone-cylinder 2 with the

relative surface impedance given by eq. (4.2.3) due to both TE and TM polarized incident

fields with angles of incidence _0,= 270 ° and 0, = 0 °, 45 °, 90 °, 135 ° and 180 ° are shown

in Figures (4.2.20-29). The reason for selecting _, = 270 ° is so that an observer looking at

the scatterer along the propagation vector k _, where k _ = k01__ = k0_ _ and _., is given by

eq. (2.2.3), will see the impedance patch.
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k°s= 0"7619 _ /

kos= 0

kos= 1.4949

7/=0 kos= 4.6242

Figure 4.2.1 Graphical representation of relative surface impedance
given by eq. (4.2.1)

kos= 0.7619 ,,_

kos = 0

/
kos = 1.4949

77=1 kos = 4.6242

Figure 4.212 Graphical representation of relative surface impedance
given by eq. (4.2.2)
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Figure 4.2.3 Bistatic radar cross section for perfectly conducting cone-cylinder:
TEpolarization, #, =0 ° and 0, =45 ° - kohc. _ =3.0, kor_l =0.5,
o_ = 21 °, korup = 0.1875, korjl = 2.0, korj2 0.0, _, = 13, and _ = 9.
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Figure 4.2.4 Bistatic radar cross section for perfectly conducting cone-cylinder:
TM polarization, _, =0 ° and 0_ =45 ° - kohcl =3.0, korcyI =0.5,
a,_ c = 21 o, kor,,p = 0.1875, korj1 = 2.0, kor_ 0.0, )_, = 13, and N, = 9,.
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Figure 4.2.5 Bistatic radar cross section for cone-cylinder with piecewise constant

surface impedance: TE polarization, ¢_ = 0 ° and 0_ = 45 ° - kohc. _ = 3.0,
korc i = 0 5, a_,_ = 21 °, kor,_ = 0 1875, korjl = 2 0, kor12 = 0.0, _/a = 13

y • . . P ." . "

and N, = 9 with relatwe surface impedance gwen by eq. (4.2.1).
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Figure 4.2.6 Bistatic radar cross section for cone-cylinderwith piecewiseconstant
surfaceimpedance:TM polarization, ¢, = 0° and 0, = 45 ° - kohc. l = 3.0,

0 °
korcyI = .5, a¢,_ = 21 , koru = 0.1875, k0rj1 = 2.0, korj2 = 0.0, /_', = 13,
and N, = 9 with relative sur_ce impedance given by eq. (4.2.1).
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Figure 4.2.7 Bistatic radar cross section for cone-cylinder with piecewise constant

surface impedance: TE polarization, ¢_ = 0 ° and 0, = 45 ° - kohcy_ = 3.0,
korc i =05, t:to_ =21 ° , kor_ =0 1875, k0rjl =2 0, kor_2 =00, N =13,

y " • • " . " . $

and N, = 9 with relatwe surface Impedance gwen by eq. (4.2.2).
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Figure 4.2.8 Bistatic radar cross section for cone-cylinder with piecewise constant
surface impedance: TM polarization, _, = 0 ° and 0, = 45 ° - kohc. 1 = 3.0,
k0r_yI =0.5, ac,_e =21°, kor,_ =0.1875, korj1 =2.0, kor12 =0.0, _,=13,
N, = 9, _, = 0 °, and 0_ = 4ff ° with relative surface impedance given by
eq. (4.2.2).
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Figure 4.2.10Bistatic radar cross section for perfectly absorbing cone-cylinder:

TEpolarization, _,=270 ° and 0,=0 ° - kohc__=4, kor_=1,
t:t_e = 26.565 °, korup = k0ra2 = 0.25, k0ral = 0.75, N, = 15 and N, = _3.
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l

Figure 4.2.11 Bistatic radar cross section for perfectly absorbing cone-cylinder:

TMpolarization, _,=2700 and 0,=0 ° - kohcy1=4, korc. 1=1,
a_ = 26.565 °, kor,_p k0rj2 = 0.25, k0r_l = 0.75, N s = 15 and N, = _3.
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Figure 4.2.12 Bistatic radar cross section for perfectly absorbing cone-cylinder:
TE polarization, _, =270 ° and Oi =45 ° - kohc. l =4, korcl =1
ct_c = 26.565 °, kor,_p = korj2 = 0.25, korjl = 0.75, N, = 1_ and N, = i'3 '
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Figure 4.2.13Bistatic radar cross section for perfectly absorbing cone-cylinder:

TM polarization, ¢_,=270 ° and 0 i=45 ° - kohcyl = korc. 1 =
ao,_c = 26.565 °, kor,,p korj_ 0.25, k0rjl = 0.75, N, = 15 an_' 1,= N, = t3.
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Figure 4.2.14Bistatic radar cross section for perfectly absorbing cone-cylinder:

TE polarization, ¢, =270 ° and 0,=90 ° - kohc. 1 =4, korc,_ =1,
txo_ c = 26.565 °, kor, p = k0rj2 = 0.25, k0rjl = 0.75, N, = 1_ and N, = I3
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Figure 4.2.15Bistatic radar cross section for perfectly absorbing cone-cylinder:
TM polarization, _ =270° and 0, =90 o - kohcyl =
ct_c = 26.565 °, kor_,p = korj2 = 0.25, k0rj1 = 0.75. N, = 15 a 4' k°rcl = 1,N, = ][3.
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Figure 4.2.16Bistatic radar cross section for perfectly absorbing cone-cylinder:

TEpolarization, ¢_=270 ° and 0_=135 ° - kohc__=4, kor¢_=1,
c_ = 26.565 °, kor_p = k0rj2 = 0.25, korjl = 0.75, N, = 15 and N_ = 1'3.
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Figure 4.2.17Bistatic radar cross section for perfectly absorbing cone-cylinder:
TM polarization, _, =270 ° and 0i =135 ° - kohc. l =4, kor_l =1,
aMo = 26.565 °, kor_p = korj2 = 0.25, k0rj_ = 0.7. 5, N= = lX and N, = t3.
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Figure 4.2.18Bistatic radar cross section for perfectly absorbing cone-cylinder:
TEpolarization, _ =2700 and 0, =180 ° koh c =4, kor_l =1,
a_o = 26.565 °, kor,_p = k0rj2 = 0.25, korjl = 0.75, N, =lg and N, = _'3.
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Figure 4.2.19Bistatic radar cross section for perfectly absorbing cone-cylinder:
TMpolarization, _,=270 ° and 0_=180 ° - koh _=4, korc. _=1,
a,_ c = 26.565 °, korup = korj2 = 0.25, ko51 = 0.75, N, = 15 and N,, = t3.
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Figure 4.2.20 Bistatic radar cross section for cone-cylinder with impedance patch:

TE polarization, _i =270° and 0i =0 ° - kohcy_=4, kor_ =1,
a,_c =26.565 °, kor_ =korj2 =0.25, k0rj_ =0.75, N,=16 and J,,Y_ll;
with 77given by eq. (_.2.3).
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Figure 4.2.21 Bistatic radar cross section for cone-cylinder with impedancepatch:
TMpolarization, _,=270 ° and 0, = 0 ° - kohcy_ = 4, korcy_ =1,
ct,_, = 26.565 °, kor_ = k0rj2 = 0.25, korjj = 0.75, N, = 16 and N, = 11;
with 77given by eq. (,_.2.3).
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Figure 4.2.22 Bistatic radar cross section for cone-cylinder with impedance patch:

TE polarization, _, =270 ° and 0, =45 ° - kohoy1 =4, koroy_ =1,
ao,_c =26.565°, kor_ =k0rj2 =0.25, korj_ =0.75, N, = 16 and N, =11;
with 7/given by eq. (_.2.3).



74

q3
t_

Figure 4.2.23 Bistatic radar cross section for cone-cylinder with impedance patch:

TM polarization, ¢_,=270 ° and 0, =45 ° - kohcy1 =4, korc_1 =1,
ct_c = 26.565 °, kor,_ = k0rj_ = 0.25, k0rjl = 0.75, N, = 16 and N, = 11;
with r/given by eq. (_.2.3).
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Figure 4.2.24Bistatic radar cross section for cone-cylinder with impedancepatch:
TEpolarization, _,=270 ° and 0_=900 - kohcy1=4, korc =1,
ac_ c = 26.565 °, kor_ = k0rj2 = 0.25, k0r_ = 0.75, N, = 16 and _v_Y_ 11;
with 7/given by eq. (_.2.3).



76

(73

Figure 4.2.25 Bistatic radar cross section for cone-cylinder with impedance patch:

TM polarization, @, =270 ° and 0,=90 ° - koh_yI =4, korcyI =1,
a_, = 26.565 °, kor_ = korj2 = 0.25, k0rj_ = 0.75, N, = 16 and N, = 11;
with 7"/given by eq. (_.2.3).
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Figure 4.2.26 Bistatic radar cross section for cone-cylinder with impedancepatch:

k/_ =TE polarization, _, = 270 ° and 0 i = 135 ° kohcy I = 4, Y_=11,
a_c = 26.565 °, koru = k0rj2 = 0.25, k0rj_ = 0.75, N, = 16 and 1;
with 77given by eq. (_'.2.3).
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Figure 4.2.27 Bistatic radar cross section for cone-cylinder with impedance patch:

TMpolarization, _=270 ° and 0,=135 ° - kohcy_=4, korc__=1,
a_c=26.565 °, kor,_p=korj2=0.25, k0rjj=0.75, N,=16 and N,=ll;
with 7"/given by eq. (4.2.3).
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Figure 4.2.28 Bistatic radar cross section for cone-cylinder with impedance patch:

= k_/_ = 1,TE polarization, 0, 270° and 0, =180 ° - kohcy_ 4, Y_-ll;_c - 26.565% koru = korj2 = 0.25, korjl "- 0.75, N, - 16 and

with q given by eq. (_.2.3).
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Figure 4.2.29 Bistatic radar cross section for cone-cylinder with impedance patch:

TM polarization, ¢_,= 270 ° and /9, = 180 ° kohcy I = 4, korcy1 = 1,
ac_ = 26.565 °, koru = k0rj2 = 0.25, korjl = 0.75, N, = 16 and N_ = 11;
with r/given by eq. (_.2.3).
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